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Habitat suitability models of elkhorn coral provide
ecological insight to support coral reef restoration
Benedict Yuen1,2 , Courtney E. Stuart1, Simon J. Pittman1, Stephanie J. Green3,
Leslie M. Henderson4, Lisa M. Wedding1

Coral reefs are experiencing unprecedented levels of stress from global warming, ocean acidification, fishing, and water pollu-
tion. In the Caribbean and Western Atlantic, multiple stressors have resulted in widespread losses of the dominant reef-
building Acroporid corals, two of which are listed as threatened species under the 1973 U.S. Endangered Species Act. In
response, active coral reef restoration through the outplanting of live corals has become a widespread intervention technique.
To increase restoration success, active coral reef restoration requires significant investment and careful planning, and selection
of suitable sites for coral outplanting is an essential early step with considerable influence on restoration outcomes.We applied a
maximum entropy model to predict and map habitat suitability for the reef-building coral species, Acropora palmata, around
the island of St. Croix in the U.S. Virgin Islands. Based mostly on bathymetry and benthic habitat type, the highest performing
model predicted approximately 21.75 km2 of the highest probability of suitable habitat, of which over half occurred within
existing marine protected areas (MPAs). Outplanted coral at 60% of sites coincided with predicted maximum habitat suitabil-
ity index values greater than 0.75 and 35%with values greater than 0.90. The model reveals that all three statutory MPAs with
shallow water coral reefs have a considerable area (13.24 km2) of predicted high suitability seabed with potential for active
A. palmata restoration efforts. The predictive spatial modeling approach provides a cost-effective tool to inform future coral
restoration design and to evaluate the habitat suitability of coral outplanting sites.

Key words: Acropora palmata, coral reefs, habitat suitability, maximum entropy, predictive mapping, site selection

Implications for Practice

• Demonstrating how predictive habitat suitability model-
ing can be employed at relatively fine spatial scales to
identify potential portfolios of coral outplanting sites.

• Outlining how the results of this modeling approach can
be combined with expert opinion at various stages to
streamline and support current techniques for coral out-
plant site selection at low cost.

• An evaluation of current and planned outplanting sites in
St. Croix, highlighting potential adjustments for conserva-
tion managers to employ to capture higher proportions of
suitable habitat and therefore maximize outplant survival.

• Highlighting current data deficiencies (particularly in regard
to biophysical variables and high-resolution environmental
data) to encourage continued effort in the development of
novel data collection techniques in marine settings.

Introduction

Globally, coral reefs are experiencing severe threats from a com-
bination of anthropogenic influences at a range of spatial and
temporal scales (Hughes et al. 2018). The Intergovernmental

Panel on Climate Change (IPCC) predicts that at global warm-
ing of 1.5�C above pre-industrial levels could result in the loss
of up to 90% of the world’s coral, and at 2�C of warming many
corals will become extinct (IPCC 2018). Rising sea tempera-
tures and resultant thermal stress events pose the most signifi-
cant widespread threat to shallow water corals (Williams
et al. 2017; Guan et al. 2020). In the Caribbean, thermally
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stressed corals have shown susceptibility to disease following
marine heatwaves (Rogers 2009), as well as being impacted by
a variety of threats including nutrient loading and contaminants
from land-based sources (Wirt et al. 2013), invasive species
(e.g., Hixon et al. 2016), and fishing that can diminish the regu-
latory functions provided by fish (Valdivia et al. 2017; Shantz
et al. 2020). Each factor’s relative importance varies both tem-
porally and spatially, but Guan et al. (2020) suggested that
61% of all corals worldwide are currently under threat from both
local and global stressors and 94% are under threat from at least
one of these. The cumulative stressors operating on corals at
both global and local scales mean that both effective protection
that mitigates threats to corals and active restoration are urgently
required to secure a long-term future for coral reefs (Hoegh-
Guldberg et al. 2018; Donovan et al. 2021).

Loss of coral reefs can have widespread consequences for
tropical coastal ecosystems through reductions in structural
complexity of habitats for reef-dwelling species (Alvarez-Filip
et al. 2009; Rogers et al. 2014). The ecological impacts from loss
of living structure are exacerbated by the fact that Caribbean
coral reef communities exhibit a relatively low functional redun-
dancy (Micheli et al. 2014), meaning a decline or loss of ecosys-
tem engineer species can result in long-lasting transformative
ecological change (Mora et al. 2016; Estrada-Saldívar
et al. 2019; Toth et al. 2019). In addition, coral reef decline
has important implications for humans through the loss of
diverse and valuable ecosystem services (Eddy et al. 2021).
For instance, ecosystem services associated with coral reefs in
the U.S. Virgin Islands (USVI) have been estimated to be worth
as much as $200 million annually (van Beukering et al. 2011).

As a result of multiple interacting stressors to Caribbean coral
reefs, including white-band disease outbreaks, ocean warming,
and human activity, there is an increased awareness of the neces-
sity to mitigate stressors and to actively restore coral reefs rather
than just protecting those that remain in algal-dominated states
(Nyström et al. 2012). Although the most significant driver of
coral loss globally is ocean warming (Hughes et al. 2018), local-
ized restorative actions can support the resilience of coral reefs
by ensuring stressors are mitigated and reefs are re-populated with
living coral colonies (Cinner et al. 2016; Bayraktarov et al. 2019;
Anthony et al. 2020). Active restoration in this context is defined
as the assisted recovery of degraded ecosystems through active
human intervention, most commonly in the form of coral gardening
(Bayraktarov et al. 2016). In the Caribbean alone, more than
150 coral restoration projects are now underway across more than
20 countries (Foo & Asner 2019). The process of coral outplanting
requires significant investment of capital and resources. For instance,
based on a global sample of 87 coral restoration projects, Bayrak-
tarov et al. (2019) estimated a median cost of around $400,000/ha.
Minimizing the costs associated with outplanting and optimizing
the long-term success of restoration is crucial for attracting the
investment needed to scale up active coral reef restoration projects.

Understanding the distribution of species-specific spaces and
the most suitable outplanting sites to optimize coral growth, sur-
vival, and socioeconomic feasibility is an essential step in
designing efficient and reliable coral restoration programs
(Schopmeyer et al. 2017). McClanahan et al. (2009) highlighted

that some coral reefs, termed “reefs of hope,” have a signifi-
cantly greater likelihood of restoration success than others based
on environmental and ecological conditions operating at a range
of spatial and temporal scales. At broad spatial scales (10s to
100s of km2), such as selecting which islands to focus ecological
restoration efforts at, the most important factors are often ocean
temperatures and warming forecasts, disease prevalence, exist-
ing coral cover, wave exposure, larval connectivity, storm
occurrence, and water quality (Foo &Asner 2019). For selecting
specific sites for coral restoration at the within-island scale, a
wide range of other factors will also come into play such as
nutrient loading, predation, competition, bathymetry, benthic
habitat type, contaminants, turbidity, salinity, and other human
activity including boat traffic, anchoring, and fishing
(Hern�andez-Delgado et al. 2014; Foo & Asner 2019). The bio-
physical information requirements pose a decision support chal-
lenge since reliable high-resolution spatial data onmany of these
biophysical predictors are not widely available for coastal areas
(Robinson et al. 2011). Furthermore, suitable data for under-
standing dynamic processes and past conditions are often una-
vailable. In the absence of extensive empirical data on difficult
to measure variables, there is a need to produce reliable spatial
proxies and advance spatial analytical approaches which can be
used to inform site selection. Indeed, new remote sensing methods
are delivering unprecedented performance in high spatial resolution
data for shallow coastal seascapes (Hedley et al. 2016; Pur-
kis 2018). These technological advances in remote sensing com-
bined with high-performing predictive modeling techniques
provide analytical tools to predict habitat suitability using a combi-
nation of spatial proxies for unmeasured ecological patterns and
processes (Sekund & Pittman 2017; Schill et al. 2021a, 2021b).
However, few studies have applied these spatially explicit ecolog-
ical approaches to coral restoration.

Our work advances the mapping of critical habitat conducted
byWirt et al. (2015) that identified and mapped potential habitat
for Acropora corals in Florida and the U.S. Caribbean by over-
laying historical records of Acropora palmata (elkhorn coral)
and A. cervicornis (staghorn coral) presence (10 and 30 m,
respectively) on shallow benthic maps. This analysis identified
broadly defined depth-constrained geographical distributions
where Acropora spp. would be expected to be found (Wirt
et al. 2015). To refine the accuracy and resolution of habitat suit-
ability, we applied maximum entropy (MaxEnt) modeling (Elith
et al. 2011), a machine learning algorithm, to model and map
habitat suitability predictions for A. palmata around St. Croix.
In this case, MaxEnt predicts habitat suitability by calculating
the probability of presence using the statistical relationships
between locations of historical presence records and multiple
environmental predictors relevant to A. palmata ecology. The
resultant spatially explicit predictions of suitable elkhorn coral
habitat were intended to inform spatial prioritization in site
selection for coral outplanting, evaluate the suitability of exist-
ing restoration sites, and support the planning process for the
scaling up of coral restoration projects. Specifically, MaxEnt
was applied to model and map the species’ realized niche
(i.e. the range of environmental conditions that determine where
the species is found) across the entire geographical extent of the
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environmental data (Lauria et al. 2015; Melo-Merino
et al. 2020). Although habitat suitability modeling has been
applied to map species distributions of cold-water corals
(Davies & Guinotte 2011), this approach has seen far fewer
applications to support conservation strategies for the highly
vulnerable corals in shallow tropical coastal waters (Pittman
et al. 2009; Pittman et al. 2018; Egan et al. 2021).

Here, we address two research objectives:

(1) To apply habitat suitability modeling to quantify a realized
environmental niche and assess the relative contribution of
environmental variables for predicting the suitability of
potential A. palmata habitat around St. Croix (USVI).

(2) To apply the model results to better understand the potential
portfolio of locations that restoration projects in St. Croix
could consider for future A. palmata outplanting, as well
as to assess the suitability of existing outplanting sites.

Methods

Study Area and Focal Species

Acropora palmata, a relatively fast-growing branching coral, is
one of the most important reef-building corals in the Caribbean,
typically occupying reefs at depths shallower than 5 m, with a
relatively low heat tolerance of temperatures above 29�C (Jaap
et al. 1989). Jackson et al. (2014) estimated that A. palmata once
covered 85% of shallow (<5 m depth) Caribbean reefs, but now
around 95% have been lost. As such, this species has been clas-
sified as critically endangered by the IUCN (2008) and is listed
as threatened under the U.S. Endangered Species Act (2006).
Acropora palmata has been identified as a target for coral reef
restoration not only because of its endangered condition and
vital ecological role in Caribbean reefs, but also because this
species is well suited to the requirements of restoration projects
since it reproduces primarily by fragmentation and has relatively
fast growth rates (Schopmeyer et al. 2017).

St. Croix (Fig. 1) is the largest and southernmost of three
major islands in the USVI and has experienced one of the most
dramatic Acroporid coral die-backs in the Caribbean, primarily
due to the rapid emergence of white-band disease and marine
heatwaves (Miller et al. 2009). Mayor et al. (2006) estimated
that since 1970, St. Croix has lost around 90% of its Acropora
coral populations. Hurricanes Maria and Irma in 2017 also dam-
aged many coral reefs in this area (Viehman et al. 2020). As a
result, St. Croix has become one of the leading sites for invest-
ment in Acropora coral restoration in the Caribbean using both
asexual and sexual recruitment techniques (Moulding
et al. 2020). The Nature Conservancy, for instance, has out-
planted more than 25,000 nursery-grown Acroporid corals since
2012 (The Nature Conservancy 2018) with most effort located
in the northeast of St Croix. Although St. Croix hosts several
marine protected areas (MPAs) that encompass coral reefs,
long-term monitoring of live coral cover has revealed few signs
of recovery from cumulative impacts (Pittman et al. 2014),
largely due to a lack of systematic restoration procedure, poor
site selection, and hurricane activity. Additionally, other locally

designated Areas of Particular Concern exist but are not yet
effectively managed MPAs.

Coral Species Occurrence Data

Georeferenced species occurrence data (reported between 2000
and 2021) for A. palmata were acquired from multiple open
access data repositories: the Ocean Biodiversity Information
System (OBIS 2019), the Global Biodiversity Information
Facility (GBIF 2021), the U.S. National Oceanic and Atmo-
spheric Administration’s Coral Reef Conservation Program,
and the Nature Conservancy and University of the Virgin
Islands Conservation Data Center. Only in situ observations
were used in the model (as opposed to museum samples or relict
specimens), and duplicate observations were removed resulting
in 1,954 occurrence records for A. palmata around St. Croix
(Fig. 2). Outplanted corals were not included in the occurrence
records to avoid bias in restoration sites which may or may not
contain suitable habitat for A. palmata. Additionally, occurrence
records were concentrated on the study area’s northeast portion,
creating a geographical bias (Fig. 2). Following Stuart et al.
(2021), a bias file using a Gaussian kernel density surface
(Bowman & Azzalini 1997) was applied to MaxEnt models to
account for spatial biases in the sampling effort.

Environmental Predictors

Environmental data for the marine areas around St. Croix were
selected to quantify and map the spatial characteristics of the
seafloor terrain and the distribution of benthic habitat types, as
well as water conditions (Table 1). Satellite-derived bathymetry
modeled at 10 m resolution (Li et al. 2021) was obtained from
the Allen Coral Atlas (2022) (https://allencoralatlas.org).
Bathymetry was only available where the seafloor was reliably
detected in optical satellite images (<25 m depth). Depth valida-
tion points from bathymetry transects (41,500 for St. Croix)
were highly correlated (r2 = 0.79; residual mean square
error = 1.60) with satellite-derived depth (Li et al. 2021).
Reported errors were higher in deep waters (>15 m) and clusters
of data gaps occurred across the deeper waters (>20 m) of the
eastern insular shelf. The habitat map was also validated using
a georeferenced benthic photoquadrat approach carried out dur-
ing field surveys (Roelfsema et al. 2021).

Benthic Seascape Structure

Surface pattern metrics were applied to the bathymetric data to
quantify surface geomorphology (i.e. slope, cosine aspect
[south–north], sin aspect [west–east]) using the Benthic Terrain
Modeler tool version 3.0 in ArcGIS with a 3 � 3 window of
moving cells (Walbridge et al. 2018). Topographic complexity
of the seafloor terrain was quantified as the slope-of-slope, a
measure of the change in slope (Pittman et al. 2009) within a
3 � 3 analytical window using ArcGIS Spatial Analyst. Benthic
habitat was represented by a benthic habitat map with 12 patch
types covering shallow (<30 m depth) nearshore coral reef eco-
systems. The map was produced by the Nature Conservancy for
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Figure 1. Benthic habitat classes mapped for shallow waters (<25 m depth) around St. Croix (U.S. Virgin Island) using object-based classification of very high-
resolution satellite data. Source: The Nature Conservancy (https://sites.google.com/view/caribbean-marine-maps)

Figure 2. Acropora palmata occurrence data (blue triangles) used in MaxEnt models and the boundaries of existing MPAs around St. Croix.
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the insular Caribbean with object-based image analysis applied
to very high (<5 m) resolution Planet Labs “Dove” satellite
imagery yielding an overall map accuracy of 80% (Schill
et al. 2021b). For St. Croix, the classification algorithm was
trained (50% of data) and validated (50% of data) using 1,372
georeferenced field reference points from underwater video tran-
sects acquired in the same years as satellite images (2017–2019)
used for benthic mapping. Bathymetric data were also collected
along video transects. The benthic map was used as the area of
interest for the predictive mapping.

Water Conditions

All water parameter data were obtained using the Water Quality
Portal of the U.S. National Water Quality Monitoring Council
(https://www.waterqualitydata.us/), which collates data from
the U.S. Geological Survey, the U.S. Environmental Protection
Agency, and local government agencies. Data on water condi-
tions included sea surface temperature, salinity, turbidity, pH,
nitrate concentrations, phosphate concentrations, and photosyn-
thetically active radiation (PAR; see Supplement S1). To
account for the nonuniform temporal distribution of site mea-
surements, water quality data were divided into summer and
winter readings, and these were filtered to only include sites with
more than five unique years with data since 2000. Any datasets
that were left with insufficient data points after this process were
rejected. The remaining data, coming entirely from 2015 to
2021, were then tested independently for spatial autocorrelation
using Moran’s I with both normal approximations and Monte
Carlo permutations (Bowman & Azzalini 1997). Any datasets
that failed to show statistically significant spatial autocorrelation
(p ≤ 0.05) were rejected as this autocorrelation is a fundamental
requirement for an appropriate interpolation. Next, multicolli-
nearity among spatial predictors was examined with a Pearson
correlation matrix and tested with the variance inflation factor
(VIF). Variables with VIF >5 were removed. The point-based

datasets for summer salinity and mean summer temperature
were then rasterized in RStudio version 8.16 using an empirical
variogram model to a resolution of 10 m2 to match bathymetry
data downloaded from the Allen Coral Atlas (2022).

Predictive Mapping With MaxEnt

MaxEnt version 3.4.4 (Phillips et al. 2006) was used to model
and map the relative probability of A. palmata occurrence inter-
preted here as an index of relative habitat suitability (Fig. 3). The
A. palmata model applied 10-fold cross-validation (Anakha
et al. 2021), with each replicate using a random selection of
900 occurrence points for training and the remaining points for
testing, with an average calculated across all models
(Rengstorf et al. 2013). The environmental conditions at
A. palmata occurrence sites were compared to those at 10,000
background sites selected in accordance with the bias file, and
linear, quadratic, product, and hinge features were used.

Model evaluation was carried out using the receiver operating
characteristic (ROC), the area under the curve (AUC), and aver-
age omission. The former quantifies the discrimination capaci-
ties of the model, or in other words, the model’s ability to
discern presence points from background points (Wan
et al. 2019). An AUC value of 0.5 indicates that a model is no
better than random at discerning presence points from back-
ground points, and the closer this value is to 1, the stronger the
model performance is. Average omission estimates the model’s
likelihood of producing false absences at different cumulative
thresholds. Percent contribution and permutation importance
were used as metrics in our model assessment to evaluate the rel-
ative importance of each explanatory variable. The former
describes the marginal increase in regularized gain as each var-
iable is independently introduced to the model during the train-
ing phase, and the latter is a measure of the percentage drop in
AUC when a randomly scrambled version of each variable data-
set is used instead of the actual datapoints in the final model.

Table 1. Explanatory variables used in MaxEnt modeling after unsuitable variables were rejected.

Variable Units Data Source Definition

Water depth Meters Allen Coral Atlas (all at 10 m2

resolution)
Depth of water to the seafloor in meters

Cosine aspect South (<0) to
north (>0)

The cosine of the compass direction of a point’s
slope (in degrees), giving a value for south–north
aspect

Sin aspect West (<0) to
east (>0)

The sine of the compass direction of a point’s slope
(in degrees), giving a value for west–east aspect

Slope-of-slope Degrees of
degrees

A measure of the maximum rate of maximum slope
change (topographic complexity)

Slope Degrees A measure of the gradient of the seafloor at a point
Benthic habitat types Categorical (12) Schill et al. (2021b) (https://sites.

google.com/view/caribbean-
marine-maps)

Categorical data with 12 different classifications of
benthic habitat types around St. Croix

Mean summer temperature Degrees Celsius U.S. Environmental Protection
Agency Water Quality Portal

Average surface temperature of ocean waters from
July to September in �C

Mean summer salinity Practical
salinity units

Average concentration of ocean water salts from
July to September in ppt (parts per thousand)
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Quantifying Habitat Suitability for Historical and Future
Outplanting Sites

To evaluate the suitability of habitats surrounding existing
A. palmata restoration sites, we extracted the predicted habitat
suitability scores at 20 georeferenced outplanting sites along
St. Croix’s northern shore obtained from NOAA’s Coral Reef
Conservation Program (CRCP) between 2012 and 2021
(O’Connor et al. 2020). Sites were buffered to create an analyt-
ical window of 30-m radius (2,827 m2) around each point using
the Pairwise Buffer tool in ArcGIS Pro version 3.1.0 to encom-
pass any potential geopositional errors when the historical out-
planting sites were georeferenced with a global positioning
system. Information on survivorship and other biological indica-
tors of coral response, such as growth rates and resilience to
stressors was unavailable for outplanting sites due to the short-
term monitoring of most restoration projects to date.

The locations of four planned future restoration sites—Long
Reef, Sweepers Complex, Llews Reef, and Butler Bay—were
also obtained as a polygon data layer (Henderson 2022, personal
communication) for evaluation. These sites were selected based
on expert knowledge and local stakeholder consultation by eval-
uating a diverse set of strengths and weaknesses, opportunities,
and threats. To assess habitat suitability for A. palmata within
these polygons, the percentage and total area of each site poly-
gon classified as highly suitable habitat (defined here as >0.75
habitat suitability index [HSI]) was calculated using ArcGIS
Pro version 3.1.0.

Results

Selection of Spatial Predictors

Several water quality metrics were rejected from this analysis
due to insufficient data points or a lack of spatial autocorrelation
required for successful interpolation. Therefore, the variables
used in the MaxEnt model were bathymetry and bathymetric
derivatives including cosine aspect, sin aspect, slope, slope-of-

slope, benthic habitat, mean summer temperature, and mean
summer salinity (Table 1). A Pearson’s correlation matrix found
no significant pairwise correlations among predictor variables
(Fig. S1).

Model Performance

We used the AUC and average omission of our predictive model
to assess the model’s ability to capture presence points accu-
rately. The average model result produced an AUC value of
0.820 (3 significant figures), indicating good model perfor-
mance. The average omission plot also showed a strong linear
increase in fractional value with cumulative threshold, further
confirming strong model performance.

Quantifying the Environmental Niche for A. palmata

Response curves (Fig. 4) indicated that habitat suitability peaked
at depths of approximately 10 m, but moderately suitable habi-
tats (>0.5 relative HSI) were predicted for depths between
3 and 12 m. Spur and groove (high relief colonized hardbottom),
hardbottom with dense algae (including gorgonians and hard
corals), and dense seagrass patch types produced the highest rel-
ative habitat suitability. High suitability habitat predicted for
areas of dense seagrass, however, produced very high uncer-
tainty estimates. Habitat suitability was markedly lower where
mean summer temperatures were greater than 29.6�C, and
peaked at mean summer salinities of 34.75 PSU. However, a
small range of salinity in the study area hinders any interpreta-
tion of influence on suitability. A. palmata suitability appeared
to increase with higher values of both slope and slope-of-slope,
but both variables contributed relatively little to the final model.
The plots for cos aspect and sin aspect were excluded as none of
the metrics used for model evaluation suggested that these vari-
ables played a significant role in determining habitat suitability
for A. palmata.

Figure 3. Workflow summarizing the steps taken in data processing and habitat suitability modeling using MaxEnt.
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Identifying Possible Restoration Sites Based on Habitat
Suitability Mapping

Mapping the habitat suitability estimates produced by averaging
all 10 replicate MaxEnt models for A. palmata illustrates the dis-
tribution of potentially suitable habitat and restoration sites for
this species around St. Croix (Fig. 5). The model predicted some
concentrated areas of high suitability along the reefs of the
island’s northeast coast, where restoration efforts to date have
been focused. However, significant hotspots of suitable habitat
were also identified along the island’s southeast, north, and west

coasts. There was also a significant area of highly suitable hab-
itat along the northern portion of Buck Island Reef National
Monument. Standard deviations between model runs were gen-
erally low, with the greatest variability observed along the south
coast (Fig. 5).

Relative Importance of Environmental Factors

The environmental predictors’ percentage contribution and per-
mutation importance values varied considerably (Table 2).

Figure 4. Model response curves for bathymetry, mean summer salinity, benthic habitat, mean summer temperature, slope, and slope-of-slope based on the
Acropora palmata model runs. Buffer areas around the plots show the mean �1 SD.
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Figure 5. Maps showing aggregated predictions from the 10 replicate MaxEnt simulations of habitat suitability index (HSI) for Acropora palmata on St. Croix
and standard deviation of HSI values per cell between the 10 replicate MaxEnt models. White spaces are no data pixels at depths beyond the limits of the
bathymetric dataset.
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Some predictors contributed more during the training of the
model, as represented by their percent contribution values,
whereas others were found to be more important as predictors
in the final model. For example, the benthic habitat type had a
relatively high percent contribution during training of 20.9%,
but just a 2.6% permutation importance, whereas the opposite
was true of mean summer temperature (6.4 and 33.5%, respec-
tively). However, both percentage contribution and permutation
importance metrics indicate that water depth contributed most to
the A. palmata model. Mean summer salinity also had a rela-
tively high percent contribution of 16.8%. The other variables
included in the model made only minor contributions to model
predictions.

Where High Suitability A. palmata Habitat Is Protected

The presence of well-managedMPAs provides a potential opportu-
nity for greater threat mitigation from local stressors. One of the
largest continuous areas (6.54 km2) of high suitability A. palmata
habitat inside an MPA was predicted for nearshore waters of
St. Croix East EndMarine Park, wheremuch of the active coral res-
toration has already occurred. Buck Island Reef National Monu-
ment also encompassed a similarly large area (6.58 km2) of high
suitability habitat. Approximately 2.9% of the Salt River Bay
National Historic Park and Ecological Preserve area was predicted
as high suitability habitat for A. palmata (Table 3). The combined
highly suitable shallow water area for A. palmata inside statutory
MPAs amounts to 13.24 km2. The two deeper water offshore fish-
ery management areas had comparatively few high suitability cells
due to being located in deeper waters near the shelf edge.

Habitat Suitability of Historical A. palmata Outplant Sites

Predictions of A. palmata habitat suitability at 20 existing coral
outplanting sites (2012–2021) on St. Croix (Fig. 6) indicated high
and variable HSI scores (mean 0.80 � 0.19 SD).Most outplanting
sites (12 of 20) coincided with a seascape maximum HSI score
greater than 0.75 and 7 of 20 coinciding with HSI greater than 0.9.

Habitat Suitability of Planned Restoration Sites

The four planned outplanting sites were found to have varying
levels of habitat suitability (Fig. 7), ranging from 0.4% highly

suitable area at Sweepers Complex to 54.5% at Butler Bay
(Table 4). Overall, these four sites were estimated to contain
408,300 m2 of highly suitable area, representing 38.4% of the
total area of these sites, indicating strong agreement between
predicted high suitability reefs and sites selected through the
expert and stakeholder-led site selection.

Discussion

Habitat Suitability Modeling of A. palmata in St. Croix

Habitat suitability models for A. palmata provided insight into
the geographical distribution and some of the potential ecolog-
ical drivers of this critically endangered species around
St. Croix. Acropora palmata is a species of great socioeco-
nomic and ecological importance on Caribbean reefs given
its contribution to biodiversity, coastal protection, recreation,
and tourism (van Zanten et al. 2014). As a major reef-building
species, the large and complex structural complexity provides
high-quality habitat to many reef fish species, generating the
characteristic fish diversity of Caribbean coral reefs
(Williams et al. 2017). In St. Croix, some stands of
A. palmata remain in good health, but many colonies have
become degraded or have been lost in the past 50 years due
to a combination of disease, marine heatwaves, poor water
quality, hurricanes, and extreme swell events (Aronson &
Precht 2001; Miller et al. 2009). Many of the most highly suit-
able sites for this species were found along the reefs of the
island’s north coast and around Buck Island Reef National
Monument where restoration projects in St. Croix have been
focused. However, the results of the MaxEnt model also illus-
trate that suitable habitat for A. palmata is not limited to the
north coast of the island, where both occurrence sampling
efforts and restoration projects have concentrated.

For instance, several highly suitable reefs could be evaluated
as potential A. palmata outplanting sites along the southeast,
north, and west coasts of St. Croix., The majority of historical
coral restoration projects have been located along the northeast
coast of St. Croix because of the proximity of this area to both
existing stands of Acroporid corals, the existence of MPAs,
favorable prevailing weather patterns, and physical logistics
related to accessibility by boat. This enables restoration projects
to be far more practical and cost-effective when plans are real-
ized, given that movements of people, equipment, and ecologi-
cal resources during the restoration and future monitoring
stages are only necessary over much shorter distances. Other
unmeasured factors may reduce suitability. For example, Lime
Tree Bay on the south coast of St. Croix is highly disturbed by
shipping traffic and pollution from the nearby industry. How-
ever, if stressors are mitigated at these south coast sites, the
potential for outplanting can be evaluated. Of the planned sites,
the low percentage of suitable area at Sweepers Complex might
have been expected given that this area was selected for its
accessibility as an easily accessible ‘outreach site’ rather than
as one of the highest priority outplanting sites (Henderson
2022, personal communication).

Table 2. Percent contribution and permutation importance values for
Acropora palmata.

Variable
Percent

Contribution
Permutation
Importance

Water depth 53.8 62.9
Habitat type 20.9 2.6
Mean summer salinity 16.8 0
Mean summer

temperature
6.4 33.5

Slope-of-slope 0.7 0.4
Cosine aspect 0.6 0.4
Slope 0.5 0.1

Sin aspect 0.3 0.2
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Spatial Predictors Driving A. palmataModels

As reported by Wirt et al. (2015), water depth was by far the
most important explanatory variable in the constructions of the
A. palmatamodels. Bathymetry and its derivative seascape met-
rics provided great potential alone to generate valuable predic-
tions of habitat suitability. The response curve of A. palmata
in relation to depth reflected the expected depth range with an
optimal depth of around 5 m (Jaap et al. 1989). Mapped benthic
habitat types also contributed to the most suitable habitats for
A. palmata occurring within shallow fore reef and spur and
groove geomorphical zones.

The relationship between mean summer temperature and hab-
itat suitability likely reflected the low tolerance of A. palmata to
temperatures above 29�C. The low contribution of sea tempera-
ture and salinity as predictors in this model do not imply that
these variables should be discounted as drivers but probably
indicate a scale-dependence in the relationship with
A. palmata and a potential mismatch between the temporal and

spatial resolution of the data and the study. The absence of any
major rivers on St. Croix also narrows the variability of salinity
experienced by corals. Scale-dependency in seascape ecology
studies has been highlighted (Wedding & Friedlander 2008;
Wedding et al. 2019) and explored in multiscale studies
(e.g., Pittman & Brown 2011) that have found different vari-
ables to have varying significance as ecological controls at dif-
ferent spatial scales (Pittman et al. 2021).

There are numerous advantages to using a predictive mapping
approach and machine learning compared to only using in situ
survey-based data to inform restoration site selection.
Using MaxEnt, this study rapidly predicted and mapped a habi-
tat suitability index across a broad geographical extent at rela-
tively fine spatial resolution using widely available environmental
predictors as spatial proxies. For the marine realm in particular, this
approach offers significant benefits given that diver surveys and
other in situ data collection approaches are relatively limited in spa-
tial extent, involve some human risk, and can be highly expensive,

Table 3. Area of predicted highly suitable Acropora palmata habitat within St. Croix marine protected areas.

MPA MPA Type
Marine

Area (km2)
Area of Highly Suitable
A. palmata habitat (km2)

St. Croix East End Marine Park Multiple use with no-take zones 149.50 6.54
Buck Island Reef National Monument No-take & restricted anchoring 76.84 6.58
Salt River Bay National Historic Park and Ecological Preserve Fishing and boating regulations 4.15 0.12
Mutton Snapper Spawning Aggregation Area Seasonal closure to fishing 8.81 <0.0001
Red Hind Spawning Aggregation Area East of St. Croix Seasonal closure to fishing 11.64 <0.001

Total 250.95 13.24

Figure 6. Map showing locations of Acropora palmata outplanting sites on St. Croix (U.S. Virgin Islands) showing the MaxEnt habitat suitability index values
(maximum) extracted within 30-m radius buffers around each point.
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time-consuming, and require high levels of expertise. Furthermore,
the strong performance of the A. palmata model based on its high
AUC value shows that modeling approaches such as MaxEnt are
viable at the relatively fine spatial scales required for endeavors
such as restoration site selection. As both machine learning algo-
rithms and modeling parameterization refinement and data cover-
age and quality continue to improve, the possibilities for
management applications with these methodologies will increase
and diversify (Melo-Merino et al. 2020).

Habitat Suitability Modeling Assumptions and Data Limitations

As with any model, certain variables and factors were omitted
from consideration, which affected the extent to which the
model runs could represent environmental realism (Oreskes
et al. 1994). The result was that the model was strongly

influenced by water depth but was relatively poor at distinguish-
ing differential habitat suitability at sites of equal and similar
depth. In particular, water quality data such as nutrient concen-
trations and pollutants would have been highly valuable to this
study, but the cost and feasibility of collecting these data at the
required scales and resolution remain prohibitive. Further, the
performance of the marine environmental variables and model
inputs are influenced by the spatial, thematic, and temporal
scales of the original data (Wedding et al. 2011). Our topo-
graphic complexity layer, for instance, was a second-derivative
from satellite-derived bathymetry (10 m resolution Sentinel-2
data), which cannot capture the fine-scale complexity that char-
acterizes coral reefs. This is an important consideration as the
ecological relationships and key findings could be driven by
the source data and spatial scale of analysis (Wedding
et al. 2019).

As corals become further threatened by a range of stressors,
the species occurrence data upon which models such as MaxEnt
can construct statistical relationships dwindles, possibly restrict-
ing the usefulness of such an approach. Some of the highly suit-
able habitat may be relic habitat where A. palmata once occurred
and where conditions suitable for growth and survival could be
restored through threat mitigation—integrating data for the sur-
vival of outplants will therefore be a valuable addition to our
modeling approach to identify such sites and inform subsequent
models once these monitoring data become available. Spatial
models can help to identify fragmentation in species distribu-
tional patterns and locations to place restoration actions that help

Figure 7. Predicted distribution of high suitability habitat for Acropora palmata and the location of four planned outplanting sites around St. Croix, U.S. Virgin
Islands. High habitat suitability index (HSI) scores greater than or equal to 0.75 as predicted by MaxEnt.

Table 4. The amount of predicted high habitat suitability for Acropora pal-
mata within four planned outplanting sites in St. Croix, U.S. Virgin Islands.
High suitability areas have HSI values >0.75.

Outplant Site
Total

Area (m2)
Highly Suitable

Area (m2)
% High
Suitability

Long Reef 524,247 250,700 47.8%
Sweepers Complex 47,074 200 0.4%
Llews Reef 366,671 88,400 24.1%
Butler Bay 126,613 69,000 54.5%

Total 1,064,605 408,300 38.4%
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bridge gaps in ecological connectivity when scaling up region-
ally (Kuffner et al. 2020). In the terrestrial realm, human use pat-
terns and land-based sources of pollution also play an important
role in habitat suitability, and spatial data layers representing
stressors could be integrated as predictors to improve model out-
comes. It is essential that those in charge of coral reef restoration
projects are as well-equipped as possible to carry out site selec-
tion, and habitat suitability modeling may provide one approach
alongside many to optimize this process.

Applying Habitat Suitability Modeling to Inform Spatial
Prioritization of Reef Restoration

There are several key implications when evaluating the applica-
bility of habitat suitability modeling approaches to coral reef res-
toration site selection. In most cases, habitat suitability modeling
may provide a first step in the site selection process, identifying
potential sites that require further examination through either
remote sensing or diver-based surveys at very fine scales. Fur-
ther studies must attempt to incorporate other relevant informa-
tion necessary for restoration success into comprehensive
decision-support tools, including logistics of access, proximity
to coral nurseries, ecological connectivity, and known threats
from land such as turbidity, nutrients, and toxic contaminants.

Our analyses of both existing and planned restoration sites
using the MaxEnt model predictions in this study also demon-
strate how such a model may be incorporated into an iterative
site selection process alongside existing techniques. While
expert knowledge and deliberation will remain essential compo-
nents of outplant site selection, maps of habitat suitability such
as the one produced in this study can offer useful points of infor-
mation to both guide and review this process. While the majority
of existing and planned outplant sites in St. Croix exhibited high
levels of habitat suitability according to our model, this method
also allowed for critical evaluation of planned restoration sites.
For example, the site at Sweepers Complex on the east side of
the island exhibited just 0.4% (200 m2) highly suitable area
due to the high coverage of nonsuitable benthic habitat here,
while our model revealed several potential sites elsewhere on
the island that have not yet been targeted for restoration.

As modeling techniques continue to develop and expand,
new analytical approaches will emerge to complement the pre-
dictive modeling provided by MaxEnt and similar techniques.
Pittman et al. (2018) emphasize the importance of multimodel
approaches when using technological techniques in marine eco-
system management. A multimodel approach refers to the
implementation of a range of models that can simulate various
processes, feedbacks, thresholds, and responses to better capture
the complexity of ecosystems in reality. While MaxEnt models
may offer useful and insightful information as shown in this
study with A. palmata, combining the contributions of multiple
models in future work may provide a more comprehensive foun-
dation upon which to make decisions regarding restoration strat-
egy. Furthermore, incorporating ecological processes into
habitat suitability models, such as hydrodynamic patterns, eco-
logical connectivity, predator distributions and nutrient path-
ways may help to refine single-species model results (Yates

et al. 2018). For example, a multimodel approach to ecological
processes has already been successfully applied in the marine lit-
erature including dispersal (Kinlan &Gaines 2003), competition
(Amarasekare 2008), and ontogenetic shifts (Dahlgren & Eggle-
ston 2000). Integration of in situ data on growth and survival can
help link habitat suitability models to key ecological processes.
Models that predict ecological connectivity across seascapes for
species that influence restoration outcomes can help to build up
a more detailed set of ecological scenarios, especially given the
importance of sexual reproduction and recruitment for the
recovery of resilient communities (Stuart et al. 2021). The com-
bination of a variety of these modeling strategies should facili-
tate the development of more comprehensive species
distribution models that produce more consistently reliable
results for managers and policy makers.

Reflecting on Habitat SuitabilityModelingWithin a Broader Coral
Reef Restoration Suite of Approaches

Habitat suitability modeling approaches such as the one
employed in this study should be seen to be just one component
of a suite of possible tools at ecologists’ and policy makers’ dis-
posal in the process of site selection for ecological restoration.
For some situations, for example, where species distribution
gaps present a challenge to site selection, then habitat suitability
modeling may play a leading role in guiding site selection in res-
toration decision-making, and in others, it may be almost
entirely insufficient or carry too much uncertainty to inform
effective site selection. This study has illustrated that although
predictive distribution modeling techniques can offer ecological
insight and operationally useful spatial information to support
restoration strategies, these modeling approaches may also
require refinement and should be tested for their transferability
to other regions if they are to be widely applicable as decision-
making tools.

This study has aimed to illustrate and evaluate the potential of
using predictive habitat suitability modeling to inform coral res-
toration efforts at a range of spatial scales, from individual coral
reefs to restoration planning units to the insular shelf of an
island. Our study advances progress in species distribution
modeling by providing new insights into the interacting sea-
scape factors controlling A. palmata distributions in St. Croix,
along with how this information may be deployed alongside
conservation managers on the ground to improve the outplant
site selection process. This methodology offers a low-cost,
rapid, and comprehensive approach to outline the key informa-
tion required for restoration in novel environments that can be
applied at a range of spatial scales and built to incorporate a wide
variety of available data sources. However, the paucity of key
ecologically important spatial data for tropical coastal areas
remains a significant challenge. Although new remote sensing
methods are working to overcome this issue, many of these still
require organized data collection projects at small scales, which
may be time-consuming and/or expensive (Hedley et al. 2016).

Despite the challenges of the data-driven modeling approach
demonstrated here, the results of this work offer promise in
applications of outplanting site selection in St. Croix, as well
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as in future projects relating to reef restoration more broadly.
One of the aims of this study was to expand on the work of Wirt
et al. (2015) and their identification of critical habitat for Acro-
porid corals in the Caribbean. The results from the A. palmata
model illustrate the potential of habitat suitability modeling in
identifying suitable habitat and informing conservation plan-
ning. Although approaches such as these will never be policy-
prescriptive, they provide access to insight that is otherwise dif-
ficult to obtain at similar scales through traditional methods such
as diver-based surveys. However, without the local experience
and knowledge of experts in any restoration setting, models such
as these hold little value in themselves, and once sites are iden-
tified for restoration, further in-depth research will be required to
confirm the suitability of sites and monitoring of outcomes. The
role of probabilistic analytical modeling techniques such as
MaxEnt may be considered as a first step in this process,
highlighting suitable habitats at the scale of an island or reef sys-
tem. As spatial modeling techniques and predictor data improve
with time, they will continue to provide more extensive and reli-
able ecological insight and serve as a cost-effective tool to
inform decision-making in conservation planning. The develop-
ment of multimodel techniques that can capture the huge com-
plexity of marine ecosystems more effectively is an especially
exciting prospect for the restoration of coral reefs. As new data
becomes available for marine settings at the finest spatial scales,
further studies must take advantage of these with the most
sophisticated modeling techniques available in order to support
marine restoration projects.
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